Link Search Menu Expand Document

Linear Algebra

Vectors

Can be represented by, (ab..)\begin{pmatrix} a\\b\\.\\. \end{pmatrix} or ai+bj+ck+ ...

Linear Combination

v1,v2,v3, ...,vnvnRnv_1,v_2,v_3,\ ...,v_n | v_n \in \R^n

of two or more vectors is basically a summation of the vectors where each of them are multiplied with a scalar.

c1v1+c2v2+c3v3+ ...+cnvncnRc_1v_1+c_2v_2+c_3v_3+\ ...+c_nv_n | c_n \in \R

Linear Combination

Span

The span is the set of all the linear combination of two or more vectors. e.g If we have two vectors where akb\overrightarrow{a}\neq k\overrightarrow{b} where kRk\in\R (\therefore the vectors are linearly independent) then the span(a,b)=R2span(a,b)=\R^2

span(a)span(\overrightarrow{a}) is a line.

span(v1,v2,v3, ...,vn)={c1v1+c2v2+c3v3+ ...+cnvnciR for 1in}span(v_1,v_2,v_3,\ ...,v_n)=\{c_1v_1+c_2v_2+c_3v_3+\ ...+c_nv_n |c_i\in\R\ for\ 1\leq i\leq n\}

span{(23),(46)}=c1(23)+c2(46)=c1(23)+2c2(23)=(c1+2c2)(23)=c3(23)(a line)\begin{aligned} span\bigg\{\begin{pmatrix}2\\3\end{pmatrix}, \begin{pmatrix}4\\6\end{pmatrix} \bigg\} &= c_1\begin{pmatrix}2\\3\end{pmatrix}+ c_2\begin{pmatrix}4\\6\end{pmatrix}\\ &=c_1\begin{pmatrix}2\\3\end{pmatrix}+ 2c_2\begin{pmatrix}2\\3\end{pmatrix}\\ &= (c_1+2c_2)\begin{pmatrix}2\\3\end{pmatrix}\\ &=c_3\begin{pmatrix}2\\3\end{pmatrix} (\therefore a\ line) \end{aligned}

To check if a set of vectors spans R3\R^3,

c1(x1x2x3)+c2(y1y2y3)+c3(z1z2z3)=(abc)c_1 \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} +c_2 \begin{pmatrix} y_1\\y_2\\y_3 \end{pmatrix} +c_3 \begin{pmatrix} z_1\\z_2\\z_3 \end{pmatrix}= \begin{pmatrix} a\\b\\c \end{pmatrix}

If \nexists a valid solution of c1, c2, c3c_1,\ c_2,\ c_3 for any given set of a, b and c values, then the set of vectors do not span R3\R^3

Inner Product

a=(a1a2a3),b=(b1b2b3)a.b=a1b1+a2b2+a3b3\textbf{a} =\begin{pmatrix} a_1\\a_2\\a_3 \end{pmatrix} , \textbf{b} = \begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix}\\ \textbf{a}.\textbf{b}=a_1b_1+a_2b_2+a_3b_3

Using matrix notation can also write it as,

aTb=a1b1+a2b2+a3b3\textbf{a}^T\textbf{b}=a_1b_1+a_2b_2+a_3b_3

where,

(a1a2a3)(b1b2b3)\begin{pmatrix} a_1&a_2&a_3 \end{pmatrix} \begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix}

Knowing all this, we can say,

aTa=a12+a22+a32aTa=a\textbf{a}^T\textbf{a} = a_1^2+a_2^2+a_3^2\\ \therefore\sqrt{\textbf{a}^T\textbf{a}} = ||\textbf{a}||

Sum of all elements of a vector:

1Ta=a1+a2+a3\textbf{1}^T\textbf{a} = a_1+a_2+a_3

Mean of vector:

(1n)Ta=a1+a2+a3n\left(\frac{1}{n}\right)^T\textbf{a} = \frac{a_1+a_2+a_3}{n}

Inner product with a unit vector:

eiTa=aie_i^T\textbf{a} = a_i

Linear Independence

In a set of vectors, If any one vector can be represented as a linear combination of the others, then the set is linearly dependent.

To check for Linear Independence for a set of vectors,

c1(x1x2x3)+c2(y1y2y3)+c3(z1z2z3)=(000)c_1 \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} +c_2 \begin{pmatrix} y_1\\y_2\\y_3 \end{pmatrix} +c_3 \begin{pmatrix} z_1\\z_2\\z_3 \end{pmatrix}= \begin{pmatrix} 0\\0\\0 \end{pmatrix}

If the only solution to this is not c1=c2=c3=0c_1=c_2=c_3=0, then the set is not Linearly Independent

Linear Superposition

If, for a function, f(αx+βy)αf(x)+βf(y)f(\alpha x+\beta y)\to \alpha f(x) + \beta f(y) then, the function is linear.

Affine Functions

Functions such that, f(α1x1+α2x2+...+αnxn)=f(\alpha_1x_1+\alpha_2x_2+...+\alpha_nx_n)= is linear, and α1+α2+...+αn=1\alpha_1 +\alpha_2+...+\alpha_n=1


Page last modified: 2/1/2022.